

Development of the atom

- The atomic model has changed over time.
- Dalton atoms (1804) spherical atoms that cannot be split up to explain the properties of gases and the formulae of compounds

Plum Pudding Model (1897) – JJ Thompson found the mass of electrons, and said that atoms consisted of rings of negative electrons embedded in a sphere of positive charge

Lead Gold

- THOMSON
- Rutherford's Nuclear Atom (1911) –showed that most of the alpha particles directed at thin gold foil passed through but a few bounced back, suggesting the positive charge was concentrated at the centre of each gold atom

• Chadwick discovered neutrons in the nucleus (1932) this explained why the mass of atoms was greater than could be accounted for by the mass of the protons.

Sub-atomic particles

- Positively charged nucleus containing positively charged protons and neutral neutrons
- Electrons are negatively charged and surround the nucleus

Subatomic Particle	Relative Charge	Relative Mass
Proton	1	1
Neutron	0	1
Electron	-1	Negligible (1/2000)

- The number of protons in an atom of an element is its **atomic number**
- All atoms of the same element have the same number of protons.
- In an atom, the number of electrons is equal to the number of protons in the nucleus.
- Mass number is the number of protons + number of neutrons

Electronic Structure

- The number of electrons is equal to the number of protons in the nucleus, so is the same as the atomic number.
- Each shell has a maximum number of electrons that it can hold. Electrons will fill the shells nearest the nucleus first.

This electron arrangement is written as 2,8,8.

Electrons = 5 Protons = 5 Atomic number = 5 Name = Boron Mass number = 11 Neutrons = 11 - 5 = 6Electron configuration = 2, 3

Isotopes

- Atoms of the same type of element with different numbers of neutrons
- Atoms will have the same atomic number but different mass numbers
- Sometimes extra neutrons make the nucleus unstable (radioactive)

Name of isotope	Symbol	Protons	Neutrons	Electrons
Hydrogen-1	1 H	1	1 - 1 = 0	1
Hydrogen-2	² H 1	1	2 - 1 = 1	1
Hydrogen-3	³ Н 1	1	3 - 1 = 2	1

Size of an Atom

- The size of an atom is given by its Atomic radius atomic radius, which is half its diameter.
- Atoms are very small, having a radius of about 0.1 nm (1 x 10–10 m).

- A bond length is the distance between the centres of two joined atoms.
- Atomic radii and bond lengths are typically around 10⁻¹⁰ m.

• The radius of a small molecule such as methane, CH_4 , is about 0.5 nm (5 x 10^{-10} m).

Isotopes

Giga	X 10 ⁹	1 000 000 000
Mega	X 10 ⁶	1 000 000
Kilo	X 10 ³	1 000
Centi	X 10 ²	1 00
Milli	X 10 -3	0.001
Micro	X 10 -6	0.000001
Nano	X 10 ⁻⁹	0.00000001

Electron Arrangement

Task: Draw the electron structure of each element below:LiMgNeS

Task: Describe the difference between the plum pudding and the nuclear model of an atom

Atomic Structure

Task: Calculate the number of sub atomic particles for the following atoms

Electrons = Protons = Atomic number = Name = Mass number = Neutrons = Electron configuration =

Electrons = Protons = Atomic number = Name = Mass number = Neutrons = Electron configuration =

Electrons = Protons = Atomic number = Name = Mass number = Neutrons = Electron configuration =

Highlight the keywords: atoms, radius, nm, nucleus, protons, neutrons, electrons, atomic number, mass number, isotope