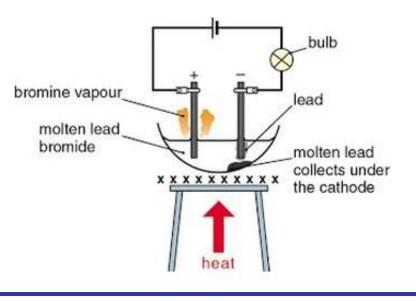


Chemistry Knowledge Organiser Electrolysis (Trilogy Science)

Ionic compounds – conducting electricity

When **solid** ions are in fixed positions.

When **molten** or **aqueous**, ions band **carry the charge** – these liquids are called **electrolytes**


Electrolysis of molten ionic compounds

Metal ions have positive charges

Non-metal ions have negative charges

Positive electrode (anode) – negative ions attracted and are discharged, losing electrons (oxidation), forming the element.

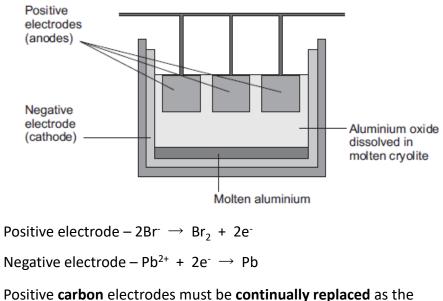
Negative electrode (cathode) – positive ions attracted and are discharged, gaining electrons (reduction), forming the element.

Electrode equations (higher only)

Charges balanced by adding electrons to more positive side.

For example, electrolysis of molten lead bromide:

Positive electrode – $2Br^- \rightarrow Br_2 + 2e^-$


Negative electrode – Pb^{2+} + $2e^- \rightarrow Pb$

Extracting metals by electrolysis

Electrolysis is used when the metal is **more reactive** than carbon.

Large amounts of energy are used to melt the compounds and produce the electrical current.

Aluminium is extracted by electrolysis of a mixture of aluminium oxide and **cryolite** – the cryolite **lowers the melting point** of the aluminium oxide so less energy is needed.

Positive **carbon** electrodes must be **continually replaced** as the oxygen produced **reacts** with them forming carbon dioxide.

Chemistry Knowledge Organiser Electrolysis (Trilogy Science)

Electrolysis of aqueous ionic compounds

H⁺ and OH⁻ ions also present from the water

Positive electrode (anode) – both OH⁻ ion and non-metal ion are attracted, **OH⁻ ion is discharged** unless the non-metal ion is a **halide** (Cl⁻, Br⁻ or I⁻) forming oxygen gas

$$4OH^{-}_{(aq)} \rightarrow O_{2(g)} + 2H_2O_{(I)} + 4e^{-}$$

Negative electrode (cathode) – both H⁺ ion and metal ion are attracted, H⁺ ion is discharged unless the metal is less reactive than hydrogen (e.g. copper or silver)

$$2H^+_{(aq)}$$
 + $2e^- \rightarrow H_{2(g)}$