
GCSE Computer Science Knowledge Organiser
SLR 2.5 Programming languages and IDEs:
Characteristics and purpose 
of different levels of programming language

Key Terminology BCS Definition

High-level language “Designed to allow the expression of a computer program in a 
way that reflects the problem being solved rather than the 
details of how the solution is produced. One-to-many.”

Low-level language “Close to machine code and closely related to the design 
of the machine. One-to-one.”

High- and low-level languages

Machine code

• Binary representation of instructions in a format that the CPU can decode and execute.

• Includes an operation code (opcode) instruction and address or data to use (operand).

Low-level languages

• Written in assembly language.

• Converted into machine code using a translator called an assembler.

• Used for embedded systems and device drivers where it is necessary to instruct hardware 

directly.

• One instruction translates into one machine code instruction.

• Code only works with one specific type of processor.

• Programmers work with memory directly.

• Code is harder to write and understand.

• Memory-efficient.

• Code is quick to execute.

High-level languages

• Written in languages like Python, C++, Java and Visual Basic.

• Converted into machine code using a translator called a compiler or interpreter.

• Makes writing programs easier by utilising commands that are like English.

• One source code instruction translates to many machine code instructions.

• Code will run on different types of processors.

• Programmers can use many different data structures.

• Code is quicker and easier to understand and write.

• Less memory-efficient.

• Code can be slower to execute if it is not optimised.

High-level: Source code

Two factors led to an explosion in the 

use of high-level languages:

• Increased processor speed

• Increased memory capacity

Assembly languages are now reserved 

for specialist situations like:

• Embedded systems

• Device drivers

Low-level: Assembly

Low-level languages like assembly allowed programmers to 

express programs using simple commands, which could 

then be translated into machine code. 

These languages were written for a specific processor and 

closely mapped to machine architecture.

Programs written in assembly language are incredibly 

efficient. 

However, assembly language requires a great deal of 

intellectual effort to use, as it is difficult to write and 

understand.



GCSE Computer Science Knowledge Organiser
SLR 2.5 Programming languages and IDEs:
The purpose of translators

Key Terminology BCS Definition

Translator “Takes a program written in one programming language and 
converts it to another.”

Compiler “Translates high-level language source code into a 
computer’s machine code.”

Interpreter “Translates and executes a program one statement at a 
time.”

The purpose of translators

Code written in both low-level assembly code and high-level source code is converted into 

binary machine code ahead of execution – this is the purpose of a translator.

There are two types of translators used to convert source code into machine code – 
interpreter and compiler. 

Assembly code is always translated into machine code using another type of translator 
called an assembler.

Compilers and interpreters

Compiler: Translates source code from high-level 

languages into object code and then into machine 

code ready to be processed by the CPU. The 

whole program is translated into machine code 

before it is run.

Advantages:

• No need for translation software at runtime.

• Faster to execute.

• Code is usually optimised.

• Original source code can be kept secret.

Disadvantages:

• Source code is easier to write in a high-level 

language, but the program will not run with 

syntax errors, which can make writing the 

code more difficult.

• Code needs to be recompiled following any 

changes.

• Designed for a specific type of processor.

Interpreter: Translates source code from high-

level languages into machine code ready to be 

processed by the CPU. The program is translated 

line by line as the program is running.

Advantages:

• Easy to write source code – the program will 

always run and only stop when it finds a syntax 

error.

• Code does not need to be recompiled 

following changes, making it is easier to try out 

commands.

• A very easy way for beginner programmers to 

learn how to write code.

Disadvantages:

• Translation software is required at runtime.

• Slower to execute.

• Code is not optimised.

• Source code must be available.



GCSE Computer Science Knowledge Organiser
SLR 2.5 Programming languages and IDEs:
Integrated Development Environments (IDEs)

Key Terminology BCS Definition

IDE Integrated Develop Environment: “A software application that 
provides comprehensive facilities for software development. 
Normally consists of a source code editor, build automation 
tools and a debugger.”

IDE: Error diagnostics “IDE tools that provide detailed feedback on errors in 
code.”

IDE: Run-time 
environment

“A configuration of hardware and software. Includes the 
CPU type, operating system and any runtime engines or 
system software required by a particular category of 
application.”IDE’s provide the following functions:

• Debugging tools for finding logic errors:

• Breakpoints to stop a program during execution when an error is found.

• Stepping through lines of code one at a time to check which lines are executing.

• Tracing through a program to output the values of variables.

• Help with preventing and identifying syntax errors:

• Illustrating keyword syntax and auto-completing command entry.

• Error highlighting.

• The compiler produces an output of the error message to help identify it.

• Run-time environment:

• Output window.

• Simulating the different devices that the program can run on.

• Usability functions:

• Navigation, showing/hiding sections of code.

• Formatting source code.

• Find and replace.

• Commenting or indenting regions of code.

Common Features of an IDE:

• Easily comment out sections of code.

• Automatically indent regions of code.

• Provide a run-time environment and output 

window.

• Provide an editor

• Line numbers

• Keyword colour highlighting

• Auto-complete

Debugging features:

• Automatic highlighting of syntax errors.

• Breakpoints

• Variable tracing 

• Step though line by line and…

• …watch variables change


	Slide 1
	Slide 2
	Slide 3

